

What is the Evidence for Using Intranasal Medicine in the Prehospital Setting? A Systematic Review

Amelia Bowman, Craig Domke & Sarah Morton

To cite this article: Amelia Bowman, Craig Domke & Sarah Morton (12 Jun 2024): What is the Evidence for Using Intranasal Medicine in the Prehospital Setting? A Systematic Review, *Prehospital Emergency Care*, DOI: [10.1080/10903127.2024.2357598](https://doi.org/10.1080/10903127.2024.2357598)

To link to this article: <https://doi.org/10.1080/10903127.2024.2357598>

© 2024 The Author(s). Published with
license by Taylor & Francis Group, LLC.

[View supplementary material](#)

Published online: 12 Jun 2024.

[Submit your article to this journal](#)

Article views: 194

[View related articles](#)

[View Crossmark data](#)

What is the Evidence for Using Intranasal Medicine in the Prehospital Setting? A Systematic Review

Amelia Bowman^a, Craig Domke^b, and Sarah Morton^c

^aOxford University, Oxford, UK; ^bUniversity of Alberta, Edmonton, Canada; ^cImperial College London, London, UK

ABSTRACT

Objectives: Intranasal (IN) medications offer a safe non-invasive way to rapidly deliver drugs in situations where intravenous (IV) access and intramuscular (IM) administration is challenging or not feasible. In the prehospital setting, this can be an essential alternative in time critical situations including trauma management, seizures, and agitated patients. However, there is a paucity of evidence summarizing its efficacy in this environment. This systematic review aims to assess the current evidence supporting the use of IN medicine (midazolam, ketamine, fentanyl, morphine, glucagon, and naloxone) in the prehospital setting alone.

Methods: A systematic literature search (PROSPERO CRD42023440713) of PubMed, Web of Science, OVID Medline, "Cochrane Central Register of Controlled Trials," Cochrane reviews and Embase was performed from inception to June 2023 to identify studies where IN medications were administered to patients in the prehospital setting. All randomized controlled trials, observational cohort studies, case series, and case reports were included. Papers not written in English, review articles, abstracts, and non-published data (including letters to the editor) were excluded. The methodological quality of the included studies was interpreted using the Cochrane risk of bias tool and rated using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. No funding was received.

Results: From 4818 studies, 39 were included (seven for midazolam, five for ketamine, twelve for fentanyl, one for diamorphine, two for glucagon, and twelve for naloxone). A total of 24,097 patients were treated with IN medications across all the studies. There were five moderate quality, four low quality, and thirty very low quality studies. The potential efficacy of IN fentanyl and ketamine was demonstrated consistently throughout the studies with less clear evidence for midazolam, morphine, glucagon, and naloxone. This review was severely limited by the study quality, with most studies demonstrating "high concerns" for bias.

Conclusions: Prehospital IN medication administration has wide-ranging potential, particularly for administering analgesia. There are likely to be certain populations, for example, pediatrics, that will benefit the most, although conclusions are limited by the quality of evidence currently available. We encourage additional research in this area, particularly with robust prospective double-blind RCTs.

Introduction

Intranasal (IN) medications offer a safe non-invasive way to rapidly deliver vital drugs in situations where intravenous (IV) access and intramuscular (IM) administration is challenging or not desired (1), for example in the pediatric setting. In the prehospital setting, this can be an essential alternative in time critical situations including trauma management, seizures, and agitated patients (1). The nasal vestibule allows for efficient drug absorption *via* its large surface area of capillaries, bypassing first-pass hepatic metabolism (2). Drug absorption *via* the olfactory neuroepithelium to the CSF also occurs (3). Together, this allows for direct absorption, predictable bioavailability, and rapid onset of action (2).

Additionally, IN drugs can be delivered successfully regardless of body habitus, patient cooperation, or age (1). Medication administration *via* the IN route has been shown to have favorable pharmacokinetics when delivery is optimized with a mucosal atomization device (MAD) (4), a device that disperses medication to the nasal passage without patient assistance. This method delivers a predictable dose IN, whereas IM dosing relies on delivery into muscle which may be difficult to localize in overweight patients (5). Compared to delivering medications IV, IN offers a faster time to drug administration, especially where multiple attempts at IV access are required or in patient populations with historically difficult access, such as pediatrics or

CONTACT Amelia Bowman amelia.bowman@medsci.ox.ac.uk

 Supplemental data for this article is available online at <https://doi.org/10.1080/10903127.2024.2357598>

© 2024 The Author(s). Published with license by Taylor & Francis LLC.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (<http://creativecommons.org/licenses/by-nc-nd/4.0/>), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

Table 1. The advantages and disadvantages of intranasal administration (3, 4).

Advantages	Disadvantages
Faster drug administration times	Maximum volume of ~0.5 ml into each nare (due to surface area of the vestibule) limits dosing capabilities
Good bioavailability	Recent use of nasal vasoconstrictors limits absorption
Less technical skill, no IV access required	Contraindicated by maxillofacial trauma and epistaxis
Relatively painless (compared to IV/IM administration)	Drug absorption can be affected by decreased mucociliary clearance (such as rhinitis, nasal secretions, cystic fibrosis, and nasal polyps)
No risk of sharps injuries	May cause mucosal irritation

Table 2. Medical subject headings (MeSH) for electronic database search.

Terms for medicines	"Midazolam" OR "ketamine" OR "s-ketamine" OR "esketamine" OR "morphine" OR "naloxone" OR "narcan" OR "glucagon" OR "fentanyl"
AND	
Terms for intranasal	"Intranasal" OR "intranasally" OR "intra-nasal" OR "IN"
AND	
Terms for prehospital	"Prehospital" OR "pre-hospital" OR "non-hospital" OR "out of hospital" OR "out-of-hospital" OR "EMS" OR "emergency medical service" OR "ambulance service" OR "air ambulance" OR "HEMS" OR "helicopter emergency medical service"

chronic intravenous drug abusers. The perceived advantages and disadvantages of IN administration are broadly summarized in Table 1 (3, 4).

The scope of IN drug use in hospital has markedly increased for a wide range of indications (4). For example, the utilization of IN fentanyl for pediatric analgesia has been demonstrated widely throughout emergency care to be effective, safe, and well-tolerated (6–9). It has been shown that IN fentanyl results in a significantly decreased time to receive analgesia compared to IV morphine in children with long bone fractures (10). However, it is unclear what the standards for IN medications are throughout the prehospital setting; there are likely multiple emergency medications, often carried by prehospital teams, that may benefit from this route of administration. These include Midazolam, Ketamine, Fentanyl, Morphine, Gucagon and Naloxone.

The aim of this systematic review was to assess the current evidence of using IN medicine in the prehospital setting only, evaluating the efficacy (analgesic/sedative effect, reversal of toxicity/hypoglycemia), adverse effects, and optimal dosing of the drugs administered by the IN route.

Methods

Data Collection and Analysis

A systematic review of the literature reporting prehospital use of the following intranasal medications (midazolam, ketamine, morphine, diamorphine, fentanyl, naloxone, glucagon) was performed.

This systematic review was carried out in accordance with the Preferred Reporting Items for Meta-Analyses (PRISMA) guidelines (11). Electronic database searching of PubMed, Web of Science, OVID Medline, "Cochrane Central Register of Controlled Trials," Cochrane Reviews, and Embase were searched independently by two reviewers (AB and SM). Table 2 shows the terms searched using Medical Subject Headings combined with Boolean operators. Defined search dates start from the inception of each database to the date each search was performed (15/06/2023).

This review was registered on the Prospero database (CRD42023440713) (12); no amendments to the protocol occurred.

All papers were uploaded to EndNote 20 (Clarivate Analytics, Boston, MA, USA). Two independent review (AB and SM) authors accessed each title and abstract for review, with relevant full-text papers retrieved for further assessment against the inclusion criteria. Duplicates were removed and reference lists of selected titles were screened for completeness. In case of disagreement, a third reviewer (CD) was utilized to decide eligibility.

Selection Criteria

All randomized controlled trials (RCTs), observational cohort studies, case series, and case reports assessing the listed IN drugs in any prehospital patient population were included. "Prehospital" was defined as any patient receiving an initial medication dose by emergency personnel outside of the hospital. The term "emergency personnel" included any emergency medical service clinician with medical training, such as paramedics, doctors, nurses, mountain rescue, and combat technicians but excluded law enforcement and other first responders without formal medical training.

Papers not written in English, review articles, abstracts, and non-published data (including letters to the editor) were excluded. Any studies using animals or cadavers were excluded.

Data Extraction

Study design, sample size, inclusion criteria, interventions and dose given, comparator method of administration, demographics of the patients, and their outcomes were extracted from full texts. The primary outcome and secondary outcomes for each drug are summarized in Table 3. Outcome assessments were performed at multiple time points post-medication administration if reported.

A variety of pain scales were used as outcome measures for the analgesic medications including a verbal numerical

Table 3. Types of outcome measures evaluated to investigate the evidence of IN drugs used in the prehospital setting.

IN medication	Indication	Primary outcome	Secondary outcome(s)
Midazolam	Agitation and anxiolysis Seizures	Sedative effect—subjective clinical change Median seizure time, termination of seizure, rescue therapy required	Second dose required Further seizures, admission to hospital, ventilatory support, adverse events
Ketamine	Agitation, sedation and analgesia	Reduction in pain score—Wong-Baker, FLACC scale, numeric rating scale, visual analogic scale, quality assessment via categories	Further doses required, adverse events, vital signs, patient reported satisfaction, time spent on scene, failed IV access attempts, time to administration
Fentanyl	Analgesia	Reduction in pain score—Wong-Baker, FLACC scale, numeric rating scale, visual analogic scale, quality assessment via categories	Further doses required, adverse events, vital signs, patient reported satisfaction, time spent on scene, failed IV access attempts, time to administration
Morphine	Analgesia	Reduction in pain score—Wong-Baker, FLACC scale, numeric rating scale, visual analogic scale, quality assessment via categories	Further doses required, adverse events, vital signs, patient reported satisfaction, time spent on scene, failed IV access attempts, time to administration
Glucagon	Hypoglycemia	Reversal of hypoglycemia—blood glucose levels pre and post-administration	Mental status/GCS
Naloxone	Opioid toxicity	Reversal of toxicity—return of spontaneous respiratory effort and GCS	Time to restoration of spontaneous respiration, number of doses, rescue doses, recurrence of overdose within 12 h and adverse events

FLACC: "faces, legs, activity, cry, consolability" scale; GCS: Glasgow Coma Scale.

rating scale (VNRS) or Wong Baker Faces Rating (WBFR) (13). Most commonly the VNRS, a numerical scale where patients are asked to rate their pain out of 10, has been used to report pain in adults as it is simple, quick, and easy to comply with (13) and is therefore likely to be feasible in the prehospital setting. The WBFR scale presents six faces of increasing pain from left to right and is often used when participants are not able to verbalize their pain scores, such as in children (14). Other validated tools that have been utilized include the FLACC Scale (Face, Legs, Activity, Cry, Consolability), for children 2 months–7 years (15) and the visual analog scale (VAS), a 10 mm line anchored at each end from no pain to the worst pain imaginable.

Where possible data was extracted directly from the full text, and, in case of missing data, such as specific sample size in some studies, this was calculated retrospectively using available data. Meta-analysis could not be performed due to the heterogeneous nature of the data extracted, variety of outcomes reported, and concerns of bias in the selected studies. Structured reporting of available effects are displayed in Table 4 and Online Appendix Table S1.

Quality Assessment of Included Studies

The Cochrane "Grading of Recommendations, Assessment, Development, and Evaluation" (GRADE) approach (16) was used to rate the reliability of evidence from each included study by two independent authors (AB and SM). A baseline quality rating was set for each study ('high' for RCTs and "low" for observational studies) and then subsequently up- or down-graded against six quality assessment criteria (risk of bias, inconsistency, indirectness, imprecision, publication bias, and others). As part of this, the limitations of each study were assessed using the Cochrane risk of bias tool (17) independently by two authors (AB and SM). The risk of bias tool evaluates the risk of confounding, selection bias, performance bias, detection bias, attrition bias, and reporting bias. Each study was subsequently graded independently as low risk, unclear risk, or high risk of bias. A study was

considered to have a low risk of bias when all the domains assessed were adequate and to have a high risk of bias when one or more of the domains were inadequate or unclear. In case of disagreement, a third author (CD) made the final decision.

Results

Study Selection and Characteristics

A total of 4818 studies were identified. After duplicates were removed, 2749 studies were screened with a total of 39 studies included (Figure 1). In total, 24,097 patients were treated with IN medications across all the studies: 3319 patients with IN midazolam; 156 patients with IN ketamine; 16,650 patients with IN fentanyl; 18 patients IN diamorphine; zero patients with morphine; 45 patients with IN glucagon and 3909 patients with IN naloxone.

The summary of study characteristics are displayed in Table 4. Full details of the findings of each individual study are available in Online Appendix Table S1; the full quality of evidence (GRADE) findings are available in Online Appendix Table S2. Of the 39 studies included, five were moderate quality, four were low quality and thirty were very low quality.

Midazolam

Seven observational studies for IN midazolam were found (18–24); six indicated for seizure management and one for behavioral emergencies. No RCTs were found but three of the studies focused on a purely pediatric population (<14 to <18 years).

For the three retrospective studies (18–20) with purely pediatric populations, two (18, 19) investigated rates of redosing with midazolam while one (20) investigated seizing on arrival at the emergency department (ED). Shavit et al. (18) and Whitfield et al. (19) compared IN midazolam against different routes of midazolam administration, including IV and IM, whereas Holsti et al. (20) compared against

Table 4. Summary of study characteristics (18–56).

Reference (publication year)	Study design	Sample size relevant to IN medication	Population	Exposure	Primary outcome	Final grade of evidence (16)
Midazolam Shavit et al. (2023) (18)	Retrospective cohort	454	Pediatric (0–18 yrs) seizure patients.	IN midazolam vs. IV/IM midazolam	The administration of rescue therapy (additional doses given after initial administration).	Very low
Whitfield et al. (2022) (19)	Retrospective observational analysis	461	Non-traumatic seizures in pediatric patients (≤14 yrs).	IN midazolam vs. IV/IM/IO midazolam	Proprietary of patients requiring redosing of midazolam after initial treatment IN.	Very low
Holsti et al. (2007) (20)	Retrospective time series analysis	39	Seizing children (<18 yrs).	IN midazolam vs. PR diazepam	Seizing on arrival at the ED.	Very low
Guterman et al. (2020) (21)	Cross-sectional analysis	702	Any adult patient treated for status epilepticus.	IN midazolam vs. IV/IM/IO midazolam	Treatment with a second benzodiazepine dose.	Very low
Guterman et al. (2022) (22)	Retrospective cohort	1500	Adult patients (≥18 yrs) with out-of-hospital status epilepticus receiving midazolam.	IN midazolam vs. IM/IV midazolam	Administration of rescue therapy as an indicator of ongoing seizure activity.	Low
Theusinger et al. (2019) (23)	Retrospective time series analysis	56	Adults (>18 yrs) and children (<18 yrs) treated for seizures.	IN midazolam vs. PR/IV diazepam vs. IV midazolam	Seizure cessation without recurrence over the period until arrival at hospital.	Very low
Huebinger et al. (2020) (24)	Retrospective cohort	107	Adult patients (18–60 yrs) treated for behavioral emergency.	IN midazolam vs. IV/IM midazolam	Recorded route and dosage of midazolam in addition to the patient's response to therapy.	Low
Ketamine Andolfatto et al. (2019) (25)	Double-blind RCT	60	Adult patients (>18 yrs) with acute pain (VNRs >5).	IN ketamine vs. placebo	Proportion of patients with VNRs score reduction ≥ at 30 min.	Moderate
Dubecq et al. (2023) (26)	Case series	76	Combat trauma patients requiring analgesia—penetrating or blast trauma (WBFR >7).	IN ketamine vs. IV ketamine vs. IV/SC morphine	Effective analgesia defined by the WBFR rating scale before administration and 10–15 mins after pain was considered controlled if WBFR <3.	Very low
Bebarta et al. (2023) (27)	Retrospective cohort	10	Non-intubated injured casualties attended to by a US combat team.	IN ketamine vs. IV/IM/IO ketamine	Dose and route of ketamine in comparison to TCCC guidelines.	Very low
Johansson et al. (2013) (28)	Case series	9	Adult patients treated with traumatic injuries requiring vascular access which was foreseen or proven problematic.	IN S-ketamine	VAS pain score before and 10 min after treatment.	Very low
Reid et al. (2011) (29)	Case report	1	9 year old boy with burn injuries.	IN ketamine	Resolution of pain by monitoring of observations.	Very low
Fentanyl Middleton et al. (2010) (30)	Retrospective observational	3778	Adult patients (16–100 yrs) with moderate to severe pain (VNRs >5).	IN fentanyl vs. IV morphine vs. inhaled methoxyflurane vs. any combination	Effective analgesia, defined as a reduction in pain severity of ≥30% of initial pain score using VNRs-11.	Very low
Bendall et al. (2011) (31)	Retrospective observational	305	Pediatric patients (5–15 yrs) who had moderate to severe pain (VNRs ≥5).	IN fentanyl vs. IV morphine vs. inhaled methoxyflurane vs. any combination	Effective analgesia, defined as a reduction in pain severity of ≥30% of initial pain score using VNRs-11.	Very low

Johnston et al. (2011) (32)	Retrospective observational	397	All patients with presumed visceral pain.	IN fentanyl vs. inhaled methoxyflurane vs. any combination	Pain was assessed with Visual/Verbal Analogue Scale pain scores, a change of ≥ 2 was considered clinically significant.	Very low
Lynch et al. (2022) (33)	Retrospective observational	247	Any patient seen for acute, painful orthopedic injuries (NRS-11 > 7).	IN fentanyl	Reduction in pain score using the NRS-11 from 0 to 5, 10, and 15 min.	Very low
Murphy et al. (2017) (34)	Prospective cross-sectional study.	94	Any child (1–16 yrs) with a pain score of ≥ 7 out of 10.	IN fentanyl vs. IV/PO morphine	Effective reduction in pain score > 2 points, documented at 10 min intervals—VNRS (> 8 yrs), FLACC (< 5 yrs), or WBFR (5–7 yrs).	Very low
Tanguay et al. (2020) (35)	Retrospective observational	719	All patients (≥ 14 yrs) with VNRS ≥ 7 .	IN fentanyl vs. SC fentanyl	Recorded clinically significant pain relief score (minimal ≥ 1.5 points on NRS, and clinically relevant ≥ 3 on NRS) and vital signs.	Low
Karlsen et al. (2014) (36)	Prospective observational	903	Adults and children (> 8 yrs) with severe pain (orthopedic, abdominal, or ACS refractory to nitroglycerin spray).	IN fentanyl	NRS (0–10) pain scores before and after treatment (minimal relevant clinical difference > 2).	Low
Rickard et al. (2007) (37)	RCT (open-label).	127	Adult patients requiring analgesia (VNRS $> 2/10$ non-cardiac or $> 5/10$ cardiac). Prehospital trauma patients with isolated limb injury.	IN fentanyl vs. IV morphine	Difference in baseline/destination VNRS.	Moderate
Eidenbenz et al. (2016) (38)	Retrospective observational	92		IN fentanyl vs. IV ketamine vs. IV fentanyl	Determinants of prehospital analgesia administration and choice of agent—recorded route, dose and type of analgesia, pain (NRS-11), injury severity score, physician experience.	Very low
Lord et al. (2019) (39)	Retrospective time-series analysis	9883	Patients (< 15 yrs) with an initial pain severity score > 3 .	IN fentanyl (\pm IM morphine \pm inhaled methoxyflurane)	Proportion of patients having a $> 2/10$ reduction in pain severity score (VNRS-11) before and after protocol change. If difficulty with VNRS-11, WBFR was used.	Very low
O'Donnell et al. (2013) (40)	Retrospective cohort	13	Pediatric trauma patients (< 16 yrs) with GCS 15 and VNRS > 3 or WBFR score > 4 . All patients with isolated limb injuries.	IN fentanyl vs. IV ketamine vs. IV fentanyl	Frequency of fentanyl use and factors influencing fentanyl use.	Very low
Pasquier et al. (2017) (41)	Retrospective observational	92			To describe the different analgesic strategies used with corresponding monitoring and medical treatments—pain intensity was assessed at scene and at the hospital (VNRS-11), vital signs were collected and attempts at IV access were recorded.	Very low
Morphine Ellerton et al. (2013) (42)	Prospective descriptive	18	Mountain rescue patients with a pain score $> 4/10$ on movement.	IN diamorphine vs. Entonox/IM opioid/IV opioid/oral analgesia/fentanyl lozenge	Effectiveness of pain relief (VNRS-11) defined as a $> 50\%$ reduction in initial score at 15 min and at handover.	Very low

(continued)

528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586

Table 4. Continued.

Reference (publication year)	Study design	Sample size relevant to IN medication	Population	Exposure	Primary outcome	Final grade of evidence (16)
Glucagon Haamid et al. (2023) (43)	Retrospective analysis of consecutive cases	44	All patients with suspected hypoglycemia administered IN glucagon.	IN glucagon	Clinical response to IN glucagon documented as "no improvement," "slight improvement," or "substantial improvement" regarding mental status. Response (consciousness, pre- and post-blood sugar measurements).	Very low
Sibley et al. (2013) (44)	Case report	1	39 year old patient with insulin induced hypoglycemia.	IN glucagon		Very low
Naloxone Skulberg et al. (2022) (45)	Double-dummy blinded RCT	93	Adult patients (>18 yrs) with suspected opioid overdose (miosis, RR < 8 , GCS <12). All adult (>14 yrs) patients with suspected opiate overdose, found down, or with altered mental status.	IN naloxone vs. IM naloxone vs. IN/IM placebo	Restoration of spontaneous respiration of >10 breaths a min within 10 min. Number of patients responding, and time of response, to IN naloxone. Response was defined as a significant improvement in level of consciousness.	Moderate
Barton et al. (2005) (46)	Prospective non-randomized trial	95		IN naloxone \pm IV naloxone		Very low
Barton et al. (2002) (47)	Prospective non-randomized trial	30	Patients found unconscious, with altered mental status, or with suspected opioid overdose.	IN naloxone \pm IV naloxone	Rate and time of patient response to IN naloxone, defined as a significant improvement in level of consciousness.	Very low
Merlin et al. (2010) (48)	Retrospective cohort	66	Adult patients who have overdosed on opioids.	IN naloxone vs. IV naloxone	Initial and final unassisted respiratory rate and GCS were used as indicators of naloxone effectiveness.	Very low
Robertson et al. (2009) (49)	Retrospective review following implementation of an IN protocol.	50	Patients with suspected opioid overdose.	IN naloxone vs. IV naloxone	Time from administration to clinical response and time from patient contact to clinical response. Clinical response was defined as an increase in respiratory rate (breaths/min) or GCS of ≥ 6 . Observations—heart rate, respiratory rate, and oxygen saturations.	Very low
Zuckerman et al. (2014) (50)	Case report	1	26-year-old male with exposure to fentanyl.	IN naloxone + IV naloxone		Very low
Liu et al. (2023) (51)	Retrospective cohort	2090	All patients (>18 yrs) administered naloxone.	IN naloxone vs. IM/IV naloxone	Naloxone dosages, routes, frequency of administrations, change in respiratory rate and GCS were recorded. Analysis of the change in ratio of IN to IV naloxone administrations were performed. Respiratory recovery was defined as respiratory rate of >12 per minute.	Very low

705	Maloney et al. (2020) (52)	Retrospective observational	306	Adults (>18 yrs) who received naloxone for suspected opioid overdose.	IN naloxone vs. IV/M naloxone	Assessed whether the individual dose, route, total dose, number of prehospital naloxone administrations, or occurrence of a prehospital adverse event were associated with the occurrence of adverse events in the ED.	Very low
706	Kerr et al. (2009) (53)	RCT (unblinded).	83	Patients treated for suspected opiate overdose.	IN naloxone vs. IM naloxone	Proportion of patients who responded within 10 min of naloxone treatment. Response was defined as an effective and spontaneous respiration rate ≥ 10 and/or GCS ≥ 13 .	Moderate
707	Thompson et al. (2022) (54)	Retrospective cross-sectional	218	Adult patients (>18 yrs) receiving IN naloxone.	IN naloxone at 2 different doses	Response to initial dose (yes, no, or unclear—defined as changes in mental status, respiratory rate, or oxygenation), requirement of additional dosing, and incidence of adverse effects.	Very low
708	Kelly et al. (2005) (55)	RCT	84	Adult patients with suspected opioid overdose.	IN naloxone vs. IM naloxone	Response time to regain a respiratory rate of ≥ 10 breaths/min.	Moderate
709	Weiner et al. (2017) (56)	Retrospective review following widening of IN use amongst care providers.	793	Adults (>18 yrs) treated for known/suspected opioid abuse.	IN naloxone	Number of patients requiring additional naloxone post-BLS administration. Effective naloxone dosing was defined as respiratory rate >8 and/or improvement in mental status using AVPU.	Very low

SC: subcutaneous; IM: intramuscular; IV: intravenous; IN: intranasal; IO: intravascular; yrs: years; min: minute(s); VRNS: verbal numeric rating scale; WBRF: Wong-Baker Faces Rating; TCCC: tactical combat casualty care; VAS: visual analogue scale; NRS: numerical rating scale; FLACC: faces, legs, activity, cry, consolability scale; ACS: Acute Coronary Syndrome; GCS: Glasgow Coma Scale; post-BLS: post-basic life support; AVPU: alert verbal pain unresponsive; Rescue therapy: additional doses given after initial administration.

764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822

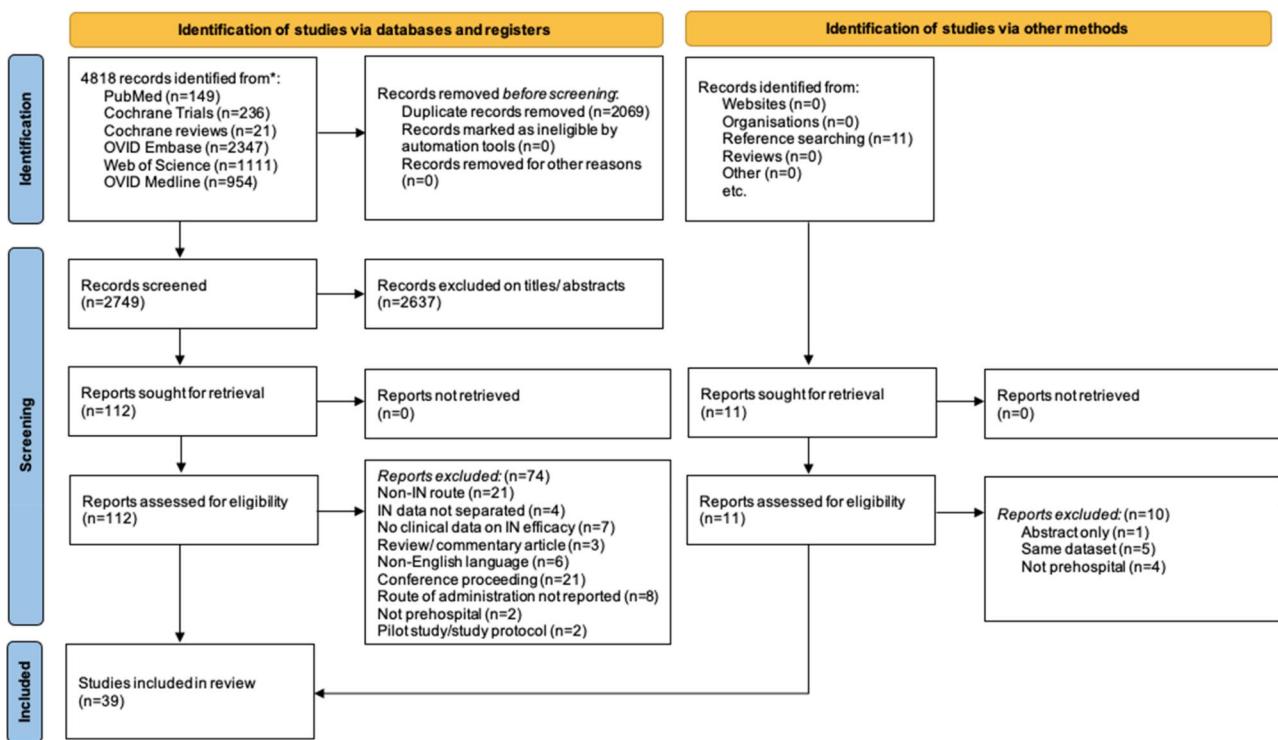


Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram for the study question (11).

PR diazepam. Despite all papers using different weight based initial IN dosing regimens, Shavit et al. (18) and Whitfield et al. (19) reported similar age adjusted odds ratios (OR) for IN patients requiring redosing compared to alternate routes of administration [1.65 (95%CI 1.13–2.42) and 2.0 (95%CI 1.5–2.5), respectively]. Of those patients requiring re-dosing, higher rates of needing respiratory support were reported. In Shavit et al. (18), 1.6% of all patients requiring a second dose of either IV, IM, or IN medication also required BVM ventilation, rising to 42.5% if four or more doses were required. For Whitfield et al. (19), the age adjusted OR for BVM ventilation (IN vs. IM/IV/IO) was 1.1 (95% CI 0.7–1.7, $p = 0.6$).

While both studies found IN midazolam to be inferior to IV midazolam, neither recorded the timing of seizures or medication administration, rates of unsuccessful cannulation, or defined seizure activity. Holsti et al. (20) found median seizure time was 19 minutes longer for PR diazepam than IN midazolam ($p = 0.003$), suggesting that IN midazolam was superior to PR diazepam.

The remaining three studies (21–23) investigating the efficacy of IN midazolam in adult populations had similar findings to the pediatric studies suggesting IN midazolam was inferior to other routes for seizure management. Guterman et al. (22) found that the risk of rescue therapy (requiring additional doses of midazolam following initial administration) was increased for IN midazolam compared to IM (Risk Difference 6.5%, 95%CI: 2.4–10.5), though like Shavit et al. (18) and Whitfield et al. (19), the timing of seizures and medication administration was not recorded. While Theusinger et al. (23), reporting on seizure cessation without recurrence as the primary outcome, showed that a single dose of IV diazepam successfully terminated seizures in 98%

compared to 57% for IV midazolam and 64% for IN midazolam ($p = 0.001$). However, both Guterman et al. (21, 22) papers agreed that higher doses of IN midazolam were less likely to require rescue therapy [unadjusted OR 0.8 (95%CI: 0.7–0.9), Risk Difference –11.1% (95%CI: –3.3 to –1.9), respectively]. Theusinger et al. (23) also compared adult findings against a small pediatric population, showing that the first IN dose of midazolam was more successful in children compared to adults (100 vs. 64%, $p = 0.012$).

Huebinger et al. (24) assessed the effect of IN midazolam on behavioral emergency against IV and IM midazolam, finding no significant difference between the effectiveness of IM and IN midazolam (71 vs. 75.4%, $p = 0.24$). Although a standardized aggression scoring system was not used, instead favoring paramedic impression to grade improvement.

Ketamine

Only five studies were identified to investigate the efficacy of IN ketamine as an analgesic; one RCT (25), two military-based observational studies (26, 27), one case series (28), and one pediatric case report (29). All papers had substantial variations in study design and outcome reporting.

Andolfatto et al. (25) assessed the effect of IN ketamine for acute pain relief against an IN placebo, using a verbal numerical rating score (VNRS) to report pain out of 10, in adults. They found that 76% of IN ketamine patients vs. 41% of IN placebo patients reported a ≥ 2 point VNRS reduction at 30 min (35% difference, $p = 0.002$), demonstrating the superiority of IN ketamine to placebo. All adverse events reported were minor, requiring no intervention. Although double-blinded, the sample size was relatively small and there was no comparison to usual treatment e.g., IV ketamine.

	Random sequence Generation (selection bias)	Allocation concealment (selection bias)	Blinding of participants and personnel (performance bias)	Blinding of outcome assessment (detection bias)	Incomplete outcome data (attrition bias)	Selective reporting (reporting bias)	Other bias
Shavit et al. (2023) (18)	-	-	-	-	+	+	-
Whitfield et al. (2022) (19)	-	-	-	-	-	+	-
Holsti et al. (2007) (20)	-	-	-	-	-	+	-
Guterman et al. (2020) (21)	-	-	-	-	-	+	-
Guterman et al. (2022) (22)	-	-	-	-	+	+	-
Theusinger et al. (2019) ⁽²³⁾	-	-	-	-	+	+	-
Huebinger et al. (2020) (24)	-	-	-	-	+	+	?
Andolfatto et al. (2019) (25)	+	+	+	?	+	+	+
Dubecq et al. (2023) (26)	-	-	-	-	+	+	?
Bebarta et al. (2023) (27)	-	-	-	-	+	+	-
Johansson et al. (2013) (28)	-	-	-	-	+	+	-
Reid et al. (2011) (29)	-	-	-	-	+	+	-
Middleton et al. (2010) (30)	-	-	-	-	-	+	-

Figure 2. Risk of bias assessment of included studies using the Cochrane risk of bias tool (17).

1059	Bendall et al. (2011) (31)	-	-	-	-	-	-
1060	Johnston et al. (2011) (32)	-	-	-	-	?	?
1061	Lynch et al. (2022) (33)	-	-	-	-	-	+
1062	Murphy et al. (2017) (34)	-	-	-	-	?	-
1063	Tanguay et al. (2020) (35)	-	-	-	-	+	+
1064	Karlsen et al. (2014) (36)	-	-	-	-	+	+
1065	Rickard et al. (2007) (37)	+	+	-	-	+	?
1066	Eidenbenz et al. (2016) (38)	-	-	-	-	+	-
1067	Lord et al. (2019) (39)	-	-	-	-	-	+
1068	O'Donnell et al. (2013) (40)	-	-	-	-	+	+
1069	Pasquier et al. (2017) (41)	-	-	-	-	+	-
1070	Ellerton et al. (2013) (42)	-	-	-	-	+	-
1071	Haamid et al. (2022) (43)	-	-	-	-	-	-
1072	Sibley et al. (2013) (44)	-	-	-	-	+	-
1073	Skulberg et al. (2022) (45)	+	+	+	+	+	+
1074	Barton et al. (2005) (46)	-	-	-	-	+	?
1075							
1076							
1077							
1078							
1079							
1080							
1081							
1082							
1083							
1084							
1085							
1086							
1087							
1088							
1089							
1090							
1091							
1092							
1093							
1094							
1095							
1096							
1097							
1098							
1099							
1100							
1101							
1102							
1103							
1104							
1105							
1106							
1107							
1108							
1109							
1110							
1111							
1112							
1113							
1114							
1115							
1116							
1117							
1118							
1119							
1120							
1121							
1122							
1123							
1124							
1125							
1126							
1127							
1128							
1129							
1130							
1131							
1132							
1133							
1134							
1135							
1136							
1137							
1138							
1139							
1140							
1141							
1142							
1143							
1144							
1145							
1146							
1147							
1148							
1149							
1150							
1151							
1152							
1153							
1154							
1155							
1156							
1157							
1158							
1159							
1160							
1161							
1162							
1163							
1164							
1165							
1166							
1167							
1168							
1169							
1170							
1171							
1172							
1173							
1174							
1175							
1176							
1177							

Figure 2. Continued.

1177	Barton et al. (2002) (47)	-	-	-	-	+	+	-
1178	Merlin et al. (2010) (48)	-	-	-	-	+	+	-
1179	Robertson et al. (2009) (49)	-	-	-	-	?	+	-
1180	Zuckerman et al. (2014) (50)	-	-	-	-	+	+	-
1181	Liu et al. (2023) (51)	-	-	-	-	-	+	?
1182	Maloney et al. (2020) (52)	-	-	-	-	-	+	-
1183	Kerr et al. (2009) (53)	+	+	-	-	+	+	-
1184	Thompson et al. (2021) (54)	-	-	-	-	?	+	-
1185	Kelly et al. (2005) (55)	+	+	-	-	-	+	?
1186	Weiner et al. (2017) (56)	-	-	-	-	-	+	-

Figure 2. Continued.

While both military studies, Dubecq et al. (26) and Bebarta et al. (27), did compare IN ketamine to other routes they were retrospective and only observational. Dubecq et al. (26) assessed effective analgesia using the Wong-Baker Faces Rating (WBFR) scale at 0–10 mins before and 10–15 mins after administration, finding that 78% of causalities in the IN group had a WBFR score of <3 at 10 min and did not require IV access. Additionally, the injury severity score for the IN group was significantly worse than the subcutaneous/IV group (28.2 vs. 16.4, $p < 0.05$). Bebarta et al. (27) compared the different routes and doses of ketamine given to injured casualties, finding that an initial 50 mg dose of IN ketamine would likely be effective as repeat dosing was not required. However, no data on individual pain scores pre- and post-administration were reported.

Johansson et al. (28) reported nine cases where IN S-ketamine was used as a last resort due to difficulties

gaining IV access. Overall, the median pain score decreased from 10 (IQR 8–10) pre-treatment to 3 (IQR 2–4) post-treatment ($p = 0.018$), demonstrating efficacy in cases with limited analgesic options. Reid et al. (29), while only reporting on one 9-year-old patient, demonstrated the use of IN ketamine as an effective analgesic in this scenario.

Fentanyl

Twelve studies (30–41) assessing IN fentanyl as an analgesic were included with the majority using a VNRS to report pain. Despite substantial variation in primary outcomes, populations (pediatric and adult), and prehospital settings (HEMS, EMS, and Ski patrol), the consensus between the studies was largely in favor of the use of prehospital IN fentanyl as an alternate analgesic (31–39, 41) with a safe side effect profile (32–37, 41), but of note, there was no clear

recommendation that it should replace other routes as a first line agent.

Bendall et al. (31) and Lord et al. (39), both investigated pediatric patients <15 years old. Bendall et al. (31) assessed effective analgesia ($\geq 30\%$ reduction of initial VNRS) of IN fentanyl compared to IV morphine, finding that 89.5% of IN fentanyl patients achieved this efficacy with no clinical or significant difference to IV morphine (OR 1.21, 95%CI: 0.74–2.01). These results held even after controlling for age and sex. Lord et al. (39) compared the use of IN fentanyl pre- and post-guideline change (allowing the administration IN fentanyl for all levels of paramedic in children of any age at an initial dose of 2 $\mu\text{g}/\text{kg}$, up to 4 $\mu\text{g}/\text{kg}$ post-guideline change) and defined effective analgesia as $>2/10$ reduction in VRNS. Finding that fentanyl use rose from 2.1 to 30.6%, and recorded rates of effective analgesia increased from 88.1 to 94.2% ($p < 0.0001$) post-intervention (OR 2.33, $p < 0.0001$).

As the only RCT, Rickard et al. (37), measured the difference between baseline and destination VNRS of IN fentanyl to IV morphine in adults. There was no significant difference between either group—mean VNRS reduction for IN fentanyl was 4.22 (95%CI: 3.74–4.71), compared to IV morphine at 3.57 (95%CI: 3.10–4.03, $p = 0.08$). Safety profile and acceptability were found to be comparable to IV morphine; however, this trial's results are limited by the fact that it was unblinded.

Of note, Middleton et al. (30) found IN fentanyl to be inferior to IV morphine, when defining effective analgesia as a $\geq 30\%$ reduction of initial VNRS in patients >16 years old. While IN fentanyl resulted in a mean VNRS decrease of 4.5, the same as IV morphine alone, IN fentanyl only had an 80% efficacy *vs.* morphine at 81.8% (univariate OR 0.90, 95%CI: 0.82–0.98). Even after controlling for age, sex, and condition, the adjusted OR of the efficacy of fentanyl *vs.* morphine remained in favor of morphine at 0.86 (95%CI: 0.78–0.94), $p = 0.002$.

O'Donnell et al. (40), assessed the rates of fentanyl use pre- and post-protocol change that allowed IN fentanyl to be delivered with a MAD to children. They found that there was no significant uptake of use (pre-MAD 30.4%, post-MAD 37.8%, $p = 0.238$), despite IV previously being identified as a barrier to administering fentanyl to children, contradicting Lord et al. (39).

Morphine/Diamorphine

No study was found that evaluated morphine. Ellerton et al. (42) investigated the effects of IN diamorphine against other forms and routes of analgesic agents (including Entonox, IM/IV opioids, oral analgesia, and fentanyl lozenges) in different mountain rescue teams across the UK. Ranking as “intermediate” in efficacy, 40% of patients receiving IN diamorphine achieved a $>50\%$ reduction in VRNS at 15 mins, rising to 50% at handover, while IV opioids ranked the best (55% achieved a $>50\%$ reduction in VRNS at 15 mins, rising to 85% at handover). No serious adverse events were recorded.

Glucagon

Only two studies (43, 44) assessed the efficacy of IN glucagon. Haamid et al. (43) retrospectively analyzed the data from 44 cases where IN glucagon was exclusively used to treat hypoglycemia. Overall, 62% of patients had “substantial improvement” or “slight improvement” in mental status on treatment. Although blood glucose was measured before and after treatment, primary outcome relied on paramedic impression of clinical improvement. Sibley et al. (44) reported the first success of IN glucagon use prehospital in a 39-year-old patient with insulin-induced hypoglycemia and difficult IV access. From only responding to pain, the patient experienced improved alertness, communication, and blood glucose levels post-treatment. Neither study directly compared IN glucagon to the usual treatment.

Naloxone

Twelve studies investigating IN naloxone were found (45–56). While all studies assessed the effect of IN naloxone on opiate reversal, there was variation in comparators, primary outcomes, and conclusions. There was a clear deviation in results with seven studies reporting non-inferiority (46–49, 51, 53, 56) and three inferiority (45, 50, 55).

Three RCTs were performed (45, 53, 55). Kerr et al. (53) and Kelly et al. (55) compared 2 mg IN naloxone to 2 mg IM (unblinded) in adults with similar primary and secondary outcomes, in parallel settings, but found conflicting results. Kerr et al. (53) found no difference in observed mean response time [IN 8.0 *vs.* IM 7.9 mins; difference 0.1 (95%CI: -1.3 to 1.5)], which held when controlled for other variables (multivariate OR 0.8 (95%CI: 0.6–1.2); $p = 0.29$); while Kelly et al. (55) found that the IN group required a significantly longer mean time to achieve a return of spontaneous respiration (>10 breathes a minute, IN 8 mins (95%CI: 7–8) *vs.* IM 6 mins (95%CI: 5–7), $p = 0.006$).

Although both studies reported overall similar rates of successful toxicity reversal (Kerr 82% *vs.* Kelly 74%) there is an obvious discrepancy between response times. Neither study reported any major adverse events. Unlike Kerr (53) and Kelly et al. (55), Skulberg et al. (45) completed a blinded double dummy RCT to assess the effect of 1.4 mg IN naloxone against 0.8 mg IM. They found IN naloxone to be inferior to IM naloxone for return of spontaneous respiration [80% IN *vs.* 97% IM, Risk Difference 17.5% (95%CI: 8.9–26.1)].

Both Skulberg et al. (45) and Kerr et al. (53) reported a higher risk of requiring additional doses (rescue therapy) when naloxone was administered IN compared to IM, 19.4% (95%CI: 9–29.7) and 13.6% (95%CI: 4.2–22.9), respectively, Maloney et al. (52) also reported similar results [44% IN group *vs.* 12% IV/IM/IO group ($p < 0.001$)]. However, when Kerr et al. (53) adjusted for confounders, the difference was non-significant [multivariate OR 4.8 (95%CI: 1.4–16.3), $p = 0.29$]. Kelly et al. (55) and Robertson et al. (49) agreed with this, finding that rescue doses did not differ significantly between groups, 26% IN *vs.* 13% IM, $p = 0.0558$, OR 2.4 (95%CI: 1–5.7) (55) and 34% IN *vs.* 18% IV, $p = 0.05$ (49).

Although average response times from initial IN naloxone administration were longer compared to IV/IM (46, 49, 55), Barton (46) and Robertson et al. (49) reported similar times from initial contact to response (9.9 ± 4.4 min IN vs. 12.8 ± 7.6 IV, and, IN 20.3 vs. IV 20.7 min, $p=0.9$, respectively).

Maloney et al. (52) and Kelly et al. (55) reported a reduced risk of adverse events compared to other routes. Although Thompson et al. (54) reported a higher risk of adverse events with the higher 2 mg dose of IN compared to lower 0.4 mg dose (29 vs. 2.1%, respectively, $p < 0.001$), the reasons surrounding this difference were unconfirmed.

No study evaluated the effect of factors surrounding the overdose (type of opioid, presence of other substances, etc.), performed subgroup analysis on population demographics, or concluded why certain routes of administration were chosen over others (where applicable).

Meta-Analysis

There was significant clinical heterogeneity across the included trials precluding meta-analysis. Specifically, there was substantial variation in dosing, primary outcome measurement, and data timepoints, as well as concerns of bias in the studies.

Risk of Bias of Included Studies

Figure 2 summarizes the risk of bias assessment of all the studies, according to the Cochrane risk of bias tool (17). Overall, the quality of the included studies was found to be low, with most studies demonstrating “high concerns” for bias in numerous domains (18–24, 26–36, 38–44, 46–52, 54, 56).

Discussion

This systematic review examines the use of intranasal medication in the prehospital setting only, demonstrating that this administration method may be feasible, but more work is needed to rigorously demonstrate non-inferiority. It does however indicate to prehospital clinicians that this route is possible for multiple medications (fentanyl, midazolam, glucagon, diamorphine, naloxone, and ketamine) and it may therefore be of great value in certain clinical situations.

Interpretation of Results in the Context of Other Evidence

Previous reviews have concluded that midazolam, ketamine, fentanyl, and glucagon may be an effective, safe, and well-tolerated alternative to other routes of administration in both ED and prehospital settings (1, 2, 4). This systematic review shows comparable results when controlling for a purely prehospital setting. Whilst IN Midazolam was shown to be mostly inferior (18, 19, 21–23) to IV and IM, the dose-dependent correlation for rescue therapy as reported by Guterman et al. (21, 22) needs to be further elucidated to see whether efficacy may in fact be improved. IN midazolam was found to be superior to PR diazepam (21) but not IV

diazepam (23) prehospitably. Interestingly, in the ED setting, no significant difference in seizure cessation or adverse event occurrence was reported when comparing IN midazolam to PR or IV diazepam under meta-analysis (57). When there is a needle phobia or IV access is impossible, IN may be a safer, and perhaps more dignified alternative to a PR route, particularly in a public setting.

Throughout the studies assessing IN ketamine, all demonstrated utility for its use as a safe analgesic (25–29). However, further studies with larger sample sizes and comparisons with other agents are needed to confirm these findings. The review by Rech et al. (4) agrees with this, maintaining that the literature for IN ketamine is unclear due to the high degree of patient variability and dosing effects shown.

IN fentanyl appears to be an effective prehospital analgesic, particularly in pediatric patients. Good side effect profiles were consistently reported throughout the included studies (32–37, 41), with literature analysis suggesting that the only adverse effect directly related to IN administration seems to be mucosal irritation (58). Furthermore, there is some consensus that the benefits of IN administration may outweigh IV analgesia by offsetting the need for IV access (30) and reducing on scene times (41).

Further evidence is needed to confirm the efficacy of IN diamorphine due to the limited number of patients treated in the prehospital setting. Whilst efficacy cannot be confirmed, no serious adverse events were reported.

Conclusions about the efficacy of IN Glucagon prehospitably are also limited by the small sample sizes available. A new formulation of IN glucagon powder (59) has since been developed with an additional absorption enhancer that is ready to use (rather than reconstitution as previously needed). Although no studies have yet been published confirming its efficacy in the prehospital setting, recent studies have shown successful treatment in a small number of patients (60, 61).

Overall, the majority IN naloxone studies reported non-inferiority with a good safety profile. However, there was substantial variation in response times between similar studies (53, 55), with some studies reporting higher rates of rescue therapy (45, 52, 53). The reason for this is unknown. Like IN fentanyl, total time from initial patient contact to response for IN naloxone was similar to IV (46, 49) suggesting some benefit incurred for the administration of IN. Interestingly, one study reported a lower rate of drug withdrawal reaction compared to IM naloxone (45). Further studies are required to confirm this finding but, if true, this could be an advantage for prehospital IN naloxone use when patients refuse transfer to hospital.

Clinical Implications

Data from 2014 suggests that 75% of UK HEMS providers were currently using or planning to use IN analgesia (62). London Ambulance Service’s Advanced Paramedic Practitioners now also carry ketamine suitable for IN administration (63). While IN medication is becoming increasingly common in the prehospital setting, there seems to be varying levels of uptake on a local and even international level.

To the best of our knowledge, there is no current guidance for air ambulance use of IN medication and an up-to-date survey of current IN medication use is likely warranted.

Even when there has been a guideline change to encourage IN use, reported uptake rates of IN use have differed e.g., O'Donnell et al. (40) vs. Lord et al. (39). The reasons for this disparity may be due to education on the topic or reluctance to try new techniques, but further studies are needed to investigate this to be able to better predict clinical uptake. Whilst there certainly is not enough evidence to substitute IN medication as a first-line agent, due to the poor-quality evidence and consistent non-standard reporting, having IN medication as an alternate option expands the scope of care available to patients.

Implications for Future Research

It should be noted that most of the included studies are low or very low quality (18–24, 26–36, 38–44, 46–52, 54–56), which limits the utility of their evidence due to their susceptibility to bias and confounding. Performing RCTs in the prehospital setting presents many difficulties for practical and ethical reasons, meaning many of the studies available were observational in nature. Reported explanations for this difficulty include issues surrounding consent, limited sample sizes, and time constraints (64).

Although observational studies have their benefits, such as large sample sizes (21, 22, 30, 35, 36, 39, 51, 56) and prolonged periods of observation (20, 23, 33, 34, 39), there is no doubt that RCTs are superior evidence allowing causality to be examined. Further RCTs, than the five reported (25, 37, 45, 53, 55), are required to generate better evidence that could guide clinical practice. Studies directly comparing IN administration to other routes (IM and IV) are warranted along with meaningful outcome data including time from on-scene arrival to, for example, pain reduction. The added complexity of investigating an innovative administration method perhaps historically deterred active research into this emerging field, but promisingly there is evidence of planned RCTs to come (65, 66).

Limitations

Of all the primary outcomes reported for midazolam, ketamine, fentanyl, diamorphine, glucagon, and naloxone, most were subjective in nature making it difficult to establish true effect sizes. For example, seizure activity was not defined in any of the studies reporting IN midazolam (18–24), with administration of rescue therapy as an outcome measure for efficacy only serving as a proxy for seizure termination. Whilst some studies utilized standardized scoring systems, such as VNRS for analgesia, and adjusted for confounding to help limit subjective reporting, many study designs failed to account for this or used scales validated for the wrong population (26). The methodological heterogeneity between study outcomes meant it was difficult to assess the true intervention effect. Even among studies assessing the same

medications, outcomes, and doses differed greatly, again limiting the ability to perform meta-analysis.

This review incorporates several diverse prehospital groups, including EMS, HEMS, mountain rescue, and the military, whilst this could be perceived as a strength, the training within in these groups is distinct on an international scale and the scope of operating practices differs greatly. This may limit the external validity of the evidence to certain pre-hospital populations. Law enforcement and other first responders without formal medical training were excluded due to the substantial variation in first aid training and ability to administer naloxone. This study was designed to assess the evidence and feasibility of IN medications in the pre-hospital setting and these professionals are not as well-equipped to evaluate efficacy and safety than trained medical clinicians. While excluding law enforcement may limit the data available, if future research were to focus on IN medication use in the community, this cohort would be an invaluable resource.

As already highlighted, the majority of studies included in this review were not RCTs, and as such the evidence available is prone to significant bias (Online Appendix Table S2). The conclusions that can be made from using IN medications in the prehospital setting are thus restricted until further robust data is reported.

Conclusions

Intranasal administration of medications within the prehospital setting appears feasible, however, these findings are severely limited by the quality of evidence available. Overall, the reported efficacy of IN fentanyl and ketamine seemed to be demonstrated consistently throughout the studies with less clear evidence for midazolam, diamorphine, glucagon, and naloxone. For the latter, whether this is a true variation in effect or due to differences in study morphology is unclear and yet to be elucidated. Robust prospective, double-blind RCTs in the prehospital setting are urgently needed to confirm the results. Having IN medication available for use by clinicians in the prehospital setting may be a useful resource in times of absence, difficult, or unwanted IV access.

Acknowledgments

Thanks go to Essex and Herts Air Ambulance Trust for facilitating a medical elective for AB whilst a medical student and generating her interest in this area.

Disclosure Statement

No potential conflict of interest was reported by the author(s).

Funding

No funding was received for this study.

Data Availability Statement

The authors confirm that the data supporting the findings of this study are available within the article [and/or] its Supplementary Materials.

References

- Bailey AM, Baum RA, Horn K, Lewis T, Morizio K, Schultz A, Weant K, Justice SN. Review of intranasally administered medications for use in the emergency department. *J Emerg Med.* 2017;53(1):38–48. doi:10.1016/j.jemermed.2017.01.020.
- Corrigan M, Wilson SS, Hampton J. Safety and efficacy of intranasally administered medications in the emergency department and prehospital settings. *Am J Health Syst Pharm.* 2015;72(18):1544–1554. doi:10.2146/ajhp140630.
- Pires A, Fortuna A, Alves G, Falcão A. Intranasal drug delivery: how, why and what for? *J Pharm Pharm Sci.* 2009;12(3):288–311. doi:10.18433/j3nc79.
- Rech MA, Barbas B, Chaney W, Greenhalgh E, Turck C. When to pick the nose: out-of-hospital and emergency department intranasal administration of medications. *Ann Emerg Med.* 2017;70(2):203–211. doi:10.1016/j.annemergmed.2017.02.015.
- Nisbet AC. Intramuscular gluteal injections in the increasingly obese population: retrospective study. *BMJ.* 2006;332(7542):637–638. doi:10.1136/bmj.38706.742731.47.
- Murphy A, O'Sullivan R, Wakai A, Grant TS, Barrett MJ, Cronin J, McCoy SC, Hom J, Kandamany N. Intranasal fentanyl for the management of acute pain in children. *Cochrane Database Syst Rev.* 2014;2014(10):CD009942. doi:10.1002/14651858.CD009942.pub2.
- Mudd S. Intranasal fentanyl for pain management in children: a systematic review of the literature. *J Pediatr Health Care.* 2011;25(5):316–322. doi:10.1016/j.pedhc.2010.04.011.
- Serra S, Spampinato MD, Riccardi A, Guarino M, Pavasini R, Fabri A, De Iaco F. Intranasal fentanyl for acute pain management in children, adults and elderly patients in the prehospital emergency service and in the emergency department: a systematic review. *J Clin Med.* 2023;12(7):2609. doi:10.3390/jcm 12072609.
- Borland M, Jacobs I, King B, O'Brien D. A randomized controlled trial comparing intranasal fentanyl to intravenous morphine for managing acute pain in children in the emergency department. *Ann Emerg Med.* 2007;49(3):335–340. doi:10.1016/j.annemergmed.2006.06.016.
- Schacherer NM, Erikson Ramirez D, Frazier SB, Perkins AM. Expedited delivery of pain medication for long-bone fractures using an intranasal fentanyl clinical pathway. *Pediatr Emerg Care.* 2015;31(8):560–563. doi:10.1097/PEC.0000000000000435.
- Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. *BMJ.* 2021;372:n160. doi:10.1136/bmj.n160.
- Bowman A, Morton S, Domke C. What is the evidence of using intranasal medicine in the pre-hospital setting? A systematic review. *PROSPERO 2023 CRD420234407132023.* https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023440713.
- Ismail AK, Abdul Ghafar MA, Shamsuddin NSA, Roslan NA, Kaharuddin H, Nik Muhamad NA. The assessment of acute pain in pre-hospital care using verbal numerical rating and visual analogue scales. *J Emerg Med.* 2015;49(3):287–293. doi:10.1016/j.jemermed.2015.02.043.
- Wong DLBC. Pain in children: comparison of assessment scales. *Pediatr Nurs.* 1988;14(1):9–17.
- Merkel SI, Voepel-Lewis T, Shayevitz JR, Malviya S. The FLACC: a behavioral scale for scoring postoperative pain in young children. *Pediatr Nurs.* 1997;23(3):293–297.
- Schunemann HB, Guyatt G, Oxman A. GRADE handbook. [accessed 2023 Sep]. <https://gdt.gradepro.org/app/handbook/handbook.html>.
- Higgins J, Thomas J. Cochrane handbook for systematic reviews of interventions; 2023. [cited 2023 Sep]. <https://training.cochrane.org/handbook/current>.
- Shavit D, Strugo R, Siman-Tov M, Nov S, Shavit I. Assessment of first-line therapy with midazolam for prehospital seizures in children. *JAMA Netw Open.* 2023;6(4):e236990. doi:10.1001/jamanetworkopen.2023.6990.
- Whitfield D, Bosson N, Kaji AH, Gausche-Hill M. The effectiveness of intranasal midazolam for the treatment of prehospital pediatric seizures: a non-inferiority study. *Prehosp Emerg Care.* 2022;26(3):339–347. doi:10.1080/10903127.2021.1897197.
- Holsti M, Sill BL, Firth SD, Filloux FM, Joyce SM, Furnival RA. Prehospital intranasal midazolam for the treatment of pediatric seizures. *Pediatr Emerg Care.* 2007;23(3):148–153. doi:10.1097/PEC.0b013e3180328c92.
- Guterman EL, Sanford JK, Betjemann JP, Zhang L, Burke JF, Lowenstein DH, Josephson SA, Sporer KA. Prehospital midazolam use and outcomes among patients with out-of-hospital status epilepticus. *Neurology.* 2020;95(24):e3203–e3212. doi:10.1212/WNL.00000000000010913.
- Guterman EL, Sporer KA, Newman TB, Crowe RP, Lowenstein DH, Josephson SA, Betjemann JP, Burke JF. Real-world midazolam use and outcomes with out-of-hospital treatment of status epilepticus in the United States. *Ann Emerg Med.* 2022;80(4):319–328. doi:10.1016/j.annemergmed.2022.05.024.
- Theusinger OM, Schenk P, Dette-Oltmann K, Mariotti S, Baulig W. Treatment of seizures in children and adults in the emergency medical system of the city of Zurich, Switzerland – midazolam vs. diazepam – a retrospective analysis. *J Emerg Med.* 2019;57(3):345–353. doi:10.1016/j.jemermed.2019.05.036.
- Huebinger RM, Zaidi HQ, Tataris KL, Weber JM, Pearlman KS, Markl E, Stein-Spencer L, Richards CT. Retrospective study of midazolam protocol for prehospital behavioral emergencies. *West J Emerg Med.* 2020;21(3):677–683. doi:10.5811/westjem.2020.3.45552.
- Andolfatto G, Innes K, Dick W, Jenneson S, Willman E, Stenstrom R, Zed PJ, Benoit G. Prehospital analgesia with intranasal ketamine (PAIN-K): a randomized double-blind trial in adults. *Ann Emerg Med.* 2019;74(2):241–250. doi:10.1016/j.annemergmed.2019.01.048.
- Dubecq C, Montagnon R, Morand G, De Rocquigny G, Petit L, Peyrefitte S, Dubourg O, Pasquier P, Mahe P. Combat casualties treated with intranasal ketamine for prehospital analgesia: a case series. *J Spec Oper Med.* 2023;23(1):84–87. doi:10.55460/OE4C-60HM.
- Bebarta GE, Bebarta VS, Fisher AD, April MD, Atkinson AJ, McGhee LL, Schauer SG. An analysis of ketamine doses administered to nonintubated casualties prehospital. *Mil Med.* 2023;188(7-8):e1426–e1430. doi:10.1093/milmed/usab511.
- Johansson J, Sjöberg J, Nordgren M, Sandström E, Sjöberg F, Zetterström H. Prehospital analgesia using nasal administration of S-ketamine—a case series. *Scand J Trauma Resusc Emerg Med.* 2013;21(1):38. doi:10.1186/1757-7241-21-38.
- Reid C, Hatton R, Middleton P. Case report: prehospital use of intranasal ketamine for paediatric burn injury. *Emerg Med J.* 2011;28(4):328–329. doi:10.1136/emj.2010.092825.
- Middleton PM, Simpson PM, Sinclair G, Dobbins TA, Math B, Bendall JC. Effectiveness of morphine, fentanyl, and methoxyflurane in the prehospital setting. *Prehosp Emerg Care.* 2010;14(4):439–447. doi:10.3109/10903127.2010.497896.
- Bendall JC, Simpson PM, Middleton PM. Effectiveness of prehospital morphine, fentanyl, and methoxyflurane in pediatric patients. *Prehosp Emerg Care.* 2011;15(2):158–165. doi:10.3109/10903127.2010.541980.
- Johnston S, Wilkes GJ, Thompson JA, Ziman M, Brightwell R. Inhaled methoxyflurane and intranasal fentanyl for prehospital management of visceral pain in an Australian ambulance service. *Emerg Med J.* 2011;28(1):57–63. doi:10.1136/emj.2009.078717.
- Lynch TV, Callas PW, Peterson TD, Schlein SM. Intranasal fentanyl for on-the-hill analgesia by ski patrol. *Wilderness Environ Med.* 2022;33(3):296–303. doi:10.1016/j.wem.2022.05.003.
- Murphy AP, Hughes M, McCoy S, Crispino G, Wakai A, O'Sullivan R. Intranasal fentanyl for the prehospital management of acute pain in children. *Eur J Emerg Med.* 2017;24(6):450–454. doi:10.1097/MEJ.0000000000000389.
- Tanguay A, Lebon J, Hébert D, Bégin F. Intranasal fentanyl versus subcutaneous fentanyl for pain management in prehospital

1767 patients with acute pain: a retrospective analysis. *Prehosp Emerg Care.* 2020;24(6):760–768. doi:[10.1080/10903127.2019.1704323](https://doi.org/10.1080/10903127.2019.1704323).

1768 36. Karlsen AP, Pedersen DM, Trautner S, Dahl JB, Hansen MS.

1769 Safety of intranasal fentanyl in the out-of-hospital setting: a pro-

1770spective observational study. *Ann Emerg Med.* 2014;63(6):699–

1771 703. doi:[10.1016/j.annemergmed.2013.10.025](https://doi.org/10.1016/j.annemergmed.2013.10.025).

1772 37. Rickard C, O'Meara P, McGrail M, Garner D, McLean A, Le

1773 Lievre P. A randomized controlled trial of intranasal fentanyl vs

1774 intravenous morphine for analgesia in the prehospital setting.

1775 *Am J Emerg Med.* 2007;25(8):911–917. doi:[10.1016/j.ajem.2007.02.027](https://doi.org/10.1016/j.ajem.2007.02.027).

1776 38. Eidenbenz D, Taffé P, Hugli O, Albrecht E, Pasquier M. A two-

1777 year retrospective review of the determinants of pre-hospital

1778 analgesia administration by alpine helicopter emergency medical

1779 physicians to patients with isolated limb injury. *Anaesthesia.*

1780 2016;71(7):779–787. doi:[10.1111/anae.13462](https://doi.org/10.1111/anae.13462).

1781 39. Lord B, Jennings PA, Smith K. Effects of the introduction of

1782 intranasal fentanyl on reduction of pain severity score in chil-

1783 dren: an interrupted time-series analysis. *Pediatr Emerg Care.*

1784 2019;35(11):749–754. doi:[10.1097/PEC.0000000000001376](https://doi.org/10.1097/PEC.0000000000001376).

1785 40. O'Donnell DP, Schafer LC, Stevens AC, Weinstein E, Miramonti

1786 CM, Kozak MA. Effect of introducing the mucosal atomization

1787 device for fentanyl use in out-of-hospital pediatric trauma

1788 patients. *Prehosp Disaster Med.* 2013;28(5):520–522. doi:[10.1017/S1049023X13003579](https://doi.org/10.1017/S1049023X13003579).

1789 41. Pasquier M, Eidenbenz D, Dami F, Ruffinen Z, Hugli O. Pain

1790 management strategies and time spent on scene for pre-hospital

1791 analgesia provision in an Alpine environment: a retrospective

1792 study. *Emerg Med.* 2017;7(4). doi:[10.4172/2165-7548.1000360](https://doi.org/10.4172/2165-7548.1000360).

1793 42. Ellerton JA, Greene M, Paal P. The use of analgesia in mountain

1794 rescue casualties with moderate or severe pain. *Emerg Med J.*

1795 2013;30(6):501–505. doi:[10.1136/emermed-2012-202291](https://doi.org/10.1136/emermed-2012-202291).

1796 43. Haamid A, Christian E, Tataris K, Markul E, Zaidi HQ, Mycyk

1797 MB, Weber JM. Prehospital intranasal glucagon for hypogly-

1798 cemia. *Prehosp Emerg Care.* 2023;27(3):356–359. doi:[10.1080/10903127.2022.2045406](https://doi.org/10.1080/10903127.2022.2045406).

1799 44. Sibley T, Jacobsen R, Salomone J. Successful administration of

1800 intranasal glucagon in the out-of-hospital environment. *Prehosp*

1801 *Emerg Care.* 2013;17(1):98–102. doi:[10.3109/10903127.2012.717171](https://doi.org/10.3109/10903127.2012.717171).

1802 45. Skulberg AK, Tylleskär I, Valberg M, Braarud A-C, Dale J,

1803 Heyerdahl F, Skálhegg T, Barstein J, Mellesmo S, Dale O, et al.

1804 Comparison of intranasal and intramuscular naloxone in opioid

1805 overdoses managed by ambulance staff: a double-dummy, randomised,

1806 controlled trial. *Addiction.* 2022;117(6):1658–1667. doi:[10.1111/add.15806](https://doi.org/10.1111/add.15806).

1807 46. Barton ED, Colwell CB, Wolfe T, Fosnocht D, Gravitz C, Bryan

1808 T, Dunn W, Benson J, Bailey J. Efficacy of intranasal naloxone

1809 as a needleless alternative for treatment of opioid overdose in

1810 the prehospital setting. *J Emerg Med.* 2005;29(3):265–271. doi:[10.1016/j.jemermed.2005.03.007](https://doi.org/10.1016/j.jemermed.2005.03.007).

1811 47. Barton ED, Ramos J, Colwell C, Benson J, Baily J, Dunn W.

1812 Intranasal administration of naloxone by paramedics. *Prehosp*

1813 *Emerg Care.* 2002;6(1):54–58. doi:[10.1080/10903120290938797](https://doi.org/10.1080/10903120290938797).

1814 48. Merlin MA, Saybolt M, Kapitanyan R, Alter SM, Jeges J, Liu J,

1815 et al. Intranasal naloxone delivery is an alternative to intravenous

1816 naloxone for opioid overdoses. *Am J Emerg Med.* 2010;28(3):

1817 296–303.

1818 49. Robertson TM, Hendey GW, Stroh G, Shalit M. Intranasal

1819 naloxone is a viable alternative to intravenous naloxone for pre-

1820 hospital narcotic overdose. *Prehosp Emerg Care.* 2009;13(4):512–

1821 515. doi:[10.1080/10903120903144866](https://doi.org/10.1080/10903120903144866).

1822 50. Zuckerman M, Weisberg SN, Boyer EW. Pitfalls of intranasal

1823 naloxone. *Prehosp Emerg Care.* 2014;18(4):550–554. doi:[10.3109/10903127.2014.896961](https://doi.org/10.3109/10903127.2014.896961).

1824 51. Liu A, Nelson AR, Shapiro M, Boyd J, Whitmore G, Joseph D,

1825 Cone DC, Couturier K. Prehospital naloxone administration

1826 patterns during the era of synthetic opioids. *Prehosp Emerg*

1827 *Care.* 2024;28(2):398–404. doi:[10.1080/10903127.2023.2184886](https://doi.org/10.1080/10903127.2023.2184886).

1828 52. Maloney LM, Alptunaer T, Coleman G, Ismael S, McKenna PJ,

1829 Marshall RT, Hernandez C, Williams DW. Prehospital naloxone

1830 and emergency department adverse events: a dose-dependent

1831 relationship. *J Emerg Med.* 2020;59(6):872–883. doi:[10.1016/j.jemermed.2020.07.009](https://doi.org/10.1016/j.jemermed.2020.07.009).

1832 53. Kerr D, Kelly AM, Dietze P, Jolley D, Barger B. Randomized

1833 controlled trial comparing the effectiveness and safety of intra-

1834 nasal and intramuscular naloxone for the treatment of suspected

1835 heroin overdose. *Addiction.* 2009;104(12):2067–2074. doi:[10.1111/j.1360-0443.2009.02724.x](https://doi.org/10.1111/j.1360-0443.2009.02724.x).

1836 54. Thompson J, Salter J, Bui P, Herbert L, Mills D, Wagner D, Brent

1837 C. Safety, efficacy, and cost of 0.4-mg versus 2-mg intranasal nalox-

1838 one for treatment of prehospital opioid overdose. *Ann*

1839 *Pharmacother.* 2022;56(3):285–289. doi:[10.1177/10600280211030918](https://doi.org/10.1177/10600280211030918).

1840 55. Kelly AM, Kerr D, Dietze P, Patrick I, Walker T, Koutsogiannis

1841 Z. Randomised trial of intranasal versus intramuscular naloxone

1842 in prehospital treatment for suspected opioid overdose. *Med J*

1843 *Aust.* 2005;182(1):24–27. doi:[10.5694/j.1326-5377.2005.tb06550.x](https://doi.org/10.5694/j.1326-5377.2005.tb06550.x).

1844 56. Weiner SG, Mitchell PM, Temin ES, Langlois BK, Dyer KS. Use

1845 of intranasal naloxone by basic life support providers. *Prehosp*

1846 *Emerg Care.* 2017;21(3):322–326. doi:[10.1080/10903127.2017.1282562](https://doi.org/10.1080/10903127.2017.1282562).

1847 57. Brigo F, Nardone R, Tezzon F, Trinka E. Nonintravenous mida-

1848 zolam versus intravenous or rectal diazepam for the treatment of

1849 early status epilepticus: a systematic review with meta-analysis.

1850 *Epilepsy Behav.* 2015;49:325–336. doi:[10.1016/j.yebeh.2015.02.030](https://doi.org/10.1016/j.yebeh.2015.02.030).

1851 58. Paech MJ, Lim CB, Banks SL, Rucklidge MW, Doherty DA. A

1852 new formulation of nasal fentanyl spray for postoperative anal-

1853 gesia: a pilot study. *Anaesthesia.* 2003;58(8):740–744. doi:[10.1046/j.1365-2044.2003.03286.x](https://doi.org/10.1046/j.1365-2044.2003.03286.x).

1854 59. BAQSIMI®. BAQSIMI (glucagon) nasal powder 3 mg. [accessed

1855 2023 Oct 11]. Information page for nasal glucagon powder.

1856 <https://www.baqsimi.com/2023>.

1857 60. Deeb LC, Dulude H, Guzman CB, Zhang S, Reiner BJ, Piché

1858 CA, Pradhan S, Zhang XM. A phase 3 multicenter, open-label,

1859 prospective study designed to evaluate the effectiveness and ease

1860 of use of nasal glucagon in the treatment of moderate and severe

1861 hypoglycemia in children and adolescents with type 1 diabetes in

1862 the home or school setting. *Pediatr Diabetes.* 2018;19(5):1007–

1863 13. doi:[10.1111/pedi.12668](https://doi.org/10.1111/pedi.12668).

1864 61. Seaquist ER, Dulude H, Zhang XM, Rabasa-Lhoret R, Tsoukas

1865 GM, Conway JR, Weisnagel SJ, Gerety G, Woo VC, Zhang S,

1866 et al. Prospective study evaluating the use of nasal glucagon for

1867 the treatment of moderate to severe hypoglycaemia in adults

1868 with type 1 diabetes in a real-world setting. *Diabetes Obes*

1869 *Metab.* 2018;20(5):1316–20. doi:[10.1111/dom.13278](https://doi.org/10.1111/dom.13278).

1870 62. Pascoe C, James S, Smith C, Warner M, Weaver A, Lockey D.

1871 What UK pre-hospital providers use intranasal analgesia? A sur-

1872vey of its current and planned use by air ambulance services in

1873 the United Kingdom. *Scand J Trauma Resusc Emerg Med.* 2014;

1874 22(S1):P15. doi:[10.1186/1757-7241-22-S1-P15](https://doi.org/10.1186/1757-7241-22-S1-P15).

1875 63. (LAS) Las. London ambulance service (LAS) APP Patient Group

1876 Direction for Ketamine (50mg/ml). Version 1.0; 2020. p. 11.

1877 64. Cimino J, Braun C. Clinical research in prehospital care: current

1878 and future challenges. *Clin Pract.* 2023;13(5):1266–1285. doi:[10.3390/clinpract13050114](https://doi.org/10.3390/clinpract13050114).

1879 65. McMullan J, Droege C, Strilka R, Hart K, C L. Intranasal keta-

1880 mine as an adjunct to fentanyl for the prehospital treatment of

1881 acute traumatic pain: design and rationale of a randomized con-

1882 trolled trial. *Prehosp Emerg Care.* 2021;25(4):519–529.

1883 66. Simensen R, Fjose LO, Rehn M, Hagemo J, Thorsen K,

1884 Heyerdahl F. Comparison of three regimens with inhalational

1885 methoxyflurane versus intranasal fentanyl versus intravenous

1886 morphine in pre-hospital acute pain management: study protocol

1887 for a randomized controlled trial (PreMeFen). *Trials.* 2023;24(1):

1888 571. doi:[10.1186/s13063-023-07590-9](https://doi.org/10.1186/s13063-023-07590-9).